Using Full-text Academic Articles and Wikipedia to Find Alternative Free Bioinformatics Software

Shutian Ma; Chengzhi Zhang

Department of Information Management, Nanjing University of Science and Technology, Nanjing, China, 210094

What do we want to do?

Find Free Software!

Abstract

Taking bioinformatics software as a case study, this paper wants to find free software which are similar with commercial ones and have potential to be alternatives. Content and network information are applied for preference-oriented results, which encapsulates similarity in how people describe them in wiki and how people use them in research.

Method

Find Bioinformatics
Software Information that
Tells us Which is
Free/Commercial

when doing linear combinations

all weights are set to be one.

Linear weighted sum of similarities in calculated based on vectors learned by LSI, LDA and Doc2Vec

Linear weighted sum of similarities in calculated based on vectors learned by LSI, LDA and Doc2Vec

inear weighted sum of similarities calculated based on vectors learned by Node2Vec, Differ2Vec and struc2vec

inear weighted sum of Wiki-Content and Wiki-Graph similarities

inear weighted sum of Paper-Content and Wiki Content similarities

Linear weighted sum of Paper-Content and Wiki Graph similarities

Linear weighted sum of Wiki-All and Paper-Content similarities

box is converted into

"Knowledge Graph"

Represent Software Using Full-text and Wiki

Compute Similarity between Free and Commercial Software

Oriented Preference
Wiki-Content
Paper-Content
Wiki-Graph
Wiki-All
PaperContent+WikiContent
PaperContent+WikiGraph
Wiki-Paper

Stable release 9.19 / July 25, 2017; 9 months ago

x86, x86-64

homology modeling o

Proprietary: academi nonprofit freeware,

English

Construct Ground Truth and Evaluate Recommendation Result

- Software Representation Generation
- LSI, LDA and Doc2Vec Represent software via vectors based on content in 100 dimensions
- Node2Vec, Differ2Vec and struc2vec Represent software via vectors based on graph in 128 dimensions
- Software Graph Construction

Node Type	Value			
developed by what kind of team	university, company and person			
year of stable release	14 different years			
written in what kind of programming language	17 languages			
operation system	Linux, Unix, Windows and MacOS			
applied platform	6 kinds			
available language	English or cross-language			
software type	44 types			

Data and Tools

- Scientific literature
 114,510 papers in XML format PLOS ONE
 11,013 articles containing bioinformatics software
- Software list

 143 specific bioinformatics software Wiki

 20 commercial software according to their licenses

 Only 97 software have info box information
- **❖** Tools

LSI and Doc2Vec - Genism

Python package of LDA

Node2Vec - OpenNE

Differ2Vec and struc2vec - Github

Experimental Result

Oriented Preference	nDCG@15	nDCG@20	nDCG@100	MAP@15	MAP@20	MAP@100	P@15	R@15
Wiki-Content	0.4312	0.4512	0.6997	0.1217	0.1624	0.8084	0.9933	0.1220
Paper-Content	0.3999	0.4237	0.6901	0.1187	0.1584	0.8036	0.9767	0.1198
Wiki-Graph	0.4112	0.4456	0.5258	0.1013	0.1369	0.4982	0.8933	0.1098
Wiki-All	0.4654	0.4915	0.7103	0.1228	0.1638	0.8099	1.0000	0.1228
PaperContent+WikiContent	0.4038	0.4219	0.6886	0.1197	0.1593	0.8048	0.9833	0.1207
PaperContent+WikiGraph	0.4313	0.4565	0.5293	0.1219	0.1622	0.5471	0.9933	0.122
Wiki+Paper	0.4268	0.447	0.7001	0.1223	0.1626	0.8094	0.9967	0.1224

- ☑ Use Wiki content ☐ Use full-text paper content
- ☑ Wiki content □ Wiki graph
- ☑ Combine Wiki content & graph ☐ Wiki content ☐ Wiki graph
- ☑ Graph embedding can help to improve Paper-based recommendation.
- ☑ Combine all information, recommendation performance isn't getting much higher as expected.

Paper-based Software Recommendation Performance

Wiki-based Software Recommendation Performance

Conclusion

- ✓ Wikipedia content and info box can be balanced together for an efficient software recommendation technique.
- ✓ Graph-based information can help to rich semantic information.
- ✓ It's not suitable to use such kind of full-text publication data set to represent entities like software or some others in research

Contact Information

Shutian Ma: mashutian0608@hotmail.com
Chengzhi Zhang: zhangcz@njust.edu.cn

